Manifolds with Nonnegative Isotropic Curvature

نویسنده

  • HARISH SESHADRI
چکیده

We prove that if (M, g) is a compact locally irreducible Riemannian manifold with nonnegative isotropic curvature, then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature (ii) (M, g) is isometric to a locally symmetric space (iii) (M, g) is Kähler and biholomorphic to CP n. This is implied by the following two results: (i) Let (M, g) be a compact, locally irreducible Kähler manifold with nonnegative isotropic curvature. Then either M is biholomorphic to CP n or isometric to a compact ireducible Hermitian symmetric space. This answers a question of Micallef and Wang in the affirmative. (ii) Let (M, g) be a compact, locally irreducible quaternionicKähler manifold with nonnegative isotropic curvature. Then (M, g) is locally symmetric. The proof is based on the recent work of S. Brendle and R. Schoen on the Ricci flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

On the Smooth Rigidity of Almost-einstein Manifolds with Nonnegative Isotropic Curvature

Let (Mn, g), n ≥ 4, be a compact simply-connected Riemannian manifold with nonnegative isotropic curvature. Given 0 < l ≤ L, we prove that there exists ε = ε(l, L, n) satisfying the following: If the scalar curvature s of g satisfies l ≤ s ≤ L and the Einstein tensor satisfies |Ric − s n g| ≤ ε then M is diffeomorphic to a symmetric space of compact type. This is a smooth analogue of the result...

متن کامل

Isotropic Curvature and the Ricci Flow

In this paper, we study the Ricci flow on higher dimensional compact manifolds. We prove that nonnegative isotropic curvature is preserved by the Ricci flow in dimensions greater than or equal to four. In order to do so, we introduce a new technique to prove that curvature functions defined on the orthonormal frame bundle are preserved by the Ricci flow. At a minimum of such a function, we comp...

متن کامل

Lower bound of Ricci flow’s existence time

Let (M, g) be a compact n-dimensional (n 2) manifold with nonnegative Ricci curvature, and if n 3, then we assume that (M, g) × R has nonnegative isotropic curvature. The lower bound of the Ricci flow’s existence time on (M, g) is proved. This provides an alternative proof for the uniform lower bound of a family of closed Ricci flows’ maximal existence times, which was first proved by E. Cabeza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008